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SUMMARY

2372y

An approximate equation valid in the region near the partially
frozen sonic line is derived. Solutions of this equation are obtained and it is
shown that the curves of constant velocity, the partially frozen sonic line,

the line of horizontal velocity and the limiting characteristic are all parabolic.

In some cases the sonic line and line of horizontal velocity intersect on either
side of the nozzle centerline. It is shown that the line of horizontal velocity

lies upstream of the sonic line.
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NOTATION

sound speed

expression defined in Eq. (23)

expression defined in Eq. (26)

expression defined in Eq. (32)

expression defined in Eq. (34)

slope of the velocity along the nozzle axis in the sonic region

expression defined in Eq. (65') !

statistical weight of ground energylevel for atom and molecule
respectively

specific enthalpy or Planck constant or nozzle height at throat
Bolizmann consiant
dissociation and recombination rate constants respectively
equilibrium constant, %i
~
expression defined in Eq. (43)
expression defined in Eq. (A.5)
mass of an atom
mass of atoms per unit mole
Mach number; expression defined in Eq. (48)
frozen Mach number
coordinate normal to streamlines
expression defired in Eq. (48)
pressure

expression defined in Eq. (48)
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qx: qy

X,y

XC-’ yC

velocity vector

x and y components of velocity

speed

gas constant per unit mass referred to diatomic gas
cdordinate along streamlines

time

temperature

Cartesian coordinates

coordinates of the point where sonic line and line of horizontal
velocity intersect

point where line of horizontal vélocity meets nozzle centerline
throat location with respect to partially frozen sonic point
degree of dissociation (mass concentration of atom)

defined in Eq. (48), —2?

fictitious specific heat ratios for frozen and equilibrium ilow
respectively (B. 13), (B. 14)

true specific heat ratios for frozen and equilibrium flows
respectively (A.33), (A.34)

defined in Eq. (23)
constant defined in Eq. (78)
transformed y coordinate
streamline angle

characteristic temperatures for rotation, vibration and dis-
sociation respectively

Mach angle
transformed x coordinate
expression defined in Eq. (66')

vi




P density
;)

characteristic density for dissociation (A. 8)

D

T perturbation parameter

’l’c"‘c{_ characteristic chemical and flow times

84 perturbation velocity potential

W rate parameter {A. 4)

e equilibrium

?5 ]C partially frozen (vibration in equilibrium with active modes;

f is used for convenience) ‘

Superscripts:

* reference state

! perturbation

il




1. INTRODUCTION

It is known that in the case of supersonic reacting gas flows in
nonequilibrium, the flow field can be calculated by means of the characteristics
method with the frozen Mach number playing a role similar to the usual Mach
number in non-reacting flows (Refs. 1 to 7). In order to calculate such flows
through a nozzle, Der (Ref. 3) has studied the various aspects of the charac-
teristics method for the supersonic part of the nozzle. Similar studies were
done by others, for example Ref. 4. However, in all the studies of the nozzle
flow, the flow was computed by quasi-one-dimensional methods up to a point
where the frozen Mach number is slightly greater than one. The flow prop-
erties so obtained are then assumed to be constant along a line perpendicular
to the nozzle axis through this point. Using this as the initial data line, the
two-dimensional supersonic flow is computed. There appears to be no justi-
fication for this assumption of a straight line with constant flow properties as
the initial line for the supersonic flow calculations. It therefore appeared
worthwhile to investigate the nature of the sonic region (i.e., the region where
the frozen Mach number is near unity) so as to establish a correct initial line
for the supersonic flow calculations.

In this note it is proposed to gtudy the nature of the sonic re-
gion by applying the small perturbation technique. This study may also be
useful, at least in a qualitative way, in the transonic region of a reacting
flow over a blunt body or in rocket exhaust plumes (Ref. 8).

2. THEORETICAL CONSIDERATIONS

a) Assumptions
(I) The analysis is restricted to the case of a pure diatomic gas like
Og9, giving a binary mixture of atoms and molecules.
(II) It is assumed that while the vibrational and translational degrees
are in equilibrium, dissociation is in nonequilibriumtpartially frozen).
(III) It is further assumed, that the dissociation is only slightly out of
equilibrium so that the dissociation rate equation may be linearized.
(1V) Only steady flows are considered.

b) Rate equation
The rate equation for the atomic mass fraction o may be written as
(Ref. 6, see also the Appendix)

DX _ .
Dt V.LOP,pX) (1)



where %— 'ngrad and y is the rate parameter and L — o for equilibrium
flows.

Corsider the flow to be a perturbation from a reference state, which may
or may not be in equilibrium, such that

)
—Q-P ‘
}’ F‘+P @
X =+ ol

(where stars denote the reference state and primes the perturbations)
and expand L (P,P,X) in a Taylor series about this reference state as

L(p.p.o) =L(Pr P of™) + Lpe P/t Lpt P+ Lo & (3)

(keeping only the first order quént1t1es) Define a local equilibrium
value oe = delpP,P)=olt +a&¢ such that L (PP, O&)
Then expanding L (P,P, %) = 0, one has

L{p, Po(e) L(p'P K)*LF*P'+L/¢*F*LO(X0(¢=O (5}

Thus one can write
LeP,P.o0) = Lywlot/-ote) = Lo (X -de) 6)

Now, putting this in the rate equation and writing the rate parameter
alqo as a pet‘turbatlon from its value for the reference state Y= “'}’“HP;
and keeping only the first orcder quantities, one obtains

+ (7)
Dt N'\‘P L (M’KQ) !,

c¢) Basic flow equations

The basic flow equations are

mass - 2L 4 pdinF =0 (8)

momentum +Lgrdp=0 (9

energy 2 " (10)

enthalpy Dt P 'D_‘E=o (11)

state o= Alp,p o) (12)
P =P(P o, |

Expanding Ig_iv_‘}lp%tg "JV’%E + ﬁx%‘é (13)

and substituting this in Eq. (10) and using Egs. (8) and (9),
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one obtains

~thy$3PF 2T _ p, Ao + Ao B = (14)

Dt

where, subscripts denote partial differentiation with respect to that
variable. From the definition of frozen speed of sound (Ref. 6)

ap= = Ao/ (hp— 1p) (15)

Eq. (14) may be written as
A ;Doc — e Lz DT s Tl (16)
Phe Dt 25 T DET ?’Jﬁ

From the linearized rate equation

-_-_'1‘/* La(*(‘)( o) (7)

one obtains by differentiation

%(%%)ﬂ L (3% -2
= 1“—,—,&‘—’ { P (»A,,+A,( o(e,)dw 7+jo (Rpt+heop~ )?’-}Q
= . P+ Rudep) | 40 2> > -
il T {4 'Ti‘e?'pt} (an

where the equilibrium speed of sound 4. is given by (Ref. 6).

d/e"z—(‘ﬁ,j"”{\.qxef’)/( -ﬁp+4u0(ep" %9) (18)
Eliminating %% on the LHS in Eq. (17) by the use of Eq. (16), one

finally obtains:

nil -I»Ay“q;)

n & Al P
Do {Bhe (o7 B2 -t

This equation can also be obtained without the assumption of the flow
being only slightly out of equilibrium (see Appendix A).

(w7 -4 “?ZJ (19)




It was shown by Vincenti (Ref. 6) that for flows which are slightly out of
equilibrium, one may introduce a velocity potential (see Apperdix C).
Now writing the velocity as a perturbation from the reference state ve-
locity ¢ *

\

' o
= "'([
by= F
where (¢ 1is the perturbation velocity potéhtial,and substituting the above in
Eqg. (19), one obtains ‘

w2 s .
(14 003 + o B 2 (et g~ G0k g3 - 24
_14/_,%:;, P(&';Lj“m){cp" t Wy - if[@{”*Vx);a;*%%,][U*P*’;M’jf=0(21>

d) Relation between sound speed and flow speed:

In order to simplify Eq. (21) for the transonic case, a relation between
the sound speeds (frozen and equilibrium) and flow speed is needed.
Since the vibrational and translational degrees are assumed to be in
equilibrium, the frozen sound speed occurring in the above equation is
actually the partially frozen sound speed (in a partially exited dissocia-
tirg gas) as derived by Glass and Takano (Ref. 5),

*= AH2 (L) RT =T} (
Ay = —5— =l (1+)RT (22)

where

A’:;—,f‘-&[5+d-+2 (c-o()%_%]

¢ . b (23)
T e S

and Risthe gasconstant. This expression can be also derived starting
from Eq. (15) as shown in the Appendix A\

A0 = (7430 RT [ 1+ L34 48]

(24)




The specific enthalpy may be written as

‘K= T+ 3x RT[ ,+2(l-o<)£+a°<_&_]

2 (7+3x)T (25)
Using Eq. (24),
. 2Hh = >
A=A a;
where
) A =A'[i+ 2ll—xX)E+2x 0> 2(-
(7+34) T ]/[H;;,;flg% (26)
From Egs. (9) and (10) for momentum and energy,
%—t- (h+%)=0
or
‘f\,-i-, ql/z = constant = hg (27)

(Since the flow is from a reservoir, hg is the same on all streamlines
and hence throughout the flow). Substituting for h from Eq. (26),, one

obtains
?1 + A a; = constant (28)
In terms of the critical speed ?* = 0.:‘_*
2>+ Aag = (A1) af* (29)
or

a,;‘—_—[( A+ D)ot ?;J/A
2[(4*‘?‘!) an-_?&J/AJ. (30)

- Under the assumption of small perturbations A is replaced by A*.

From Ref. 5, the equilibrium speed of sound (see also the Appendix A for
- derivation from Eq. (18), is given by




e By (7+3)

where

Bf’=%ﬁ[s+x+a(n-x)§%]+“("“)(‘é*Q"%&)z (32)

Using Eq. (25) for h,

24 =B e (33)

where

B, = B‘}'[l + 2“;,07‘_)'23:)2_;_(9’]/{|+;';3-5(-[2 (-a0%E + o(1-) G+ 9—’;;,.5-)1]} (34)

Denoting by de”, the value of Qg when?:&", Egs. (27) and (33) may be
c¢ombined to give an equation similar to Eq. (29), namely,

P+ Bya=al*+Blat" (39)

> _ *Z’ z * , A2
B a =07 - fF +B;de (36)

Under the assumption of small perturbations, this may be approximated

by
L Y -~
aexi“_ _@L_B_*;i-_’, ae"& | (37)

It may be shown that Bz A, G2l Wwhere the equality occurs in the limits
L= O, > |. '

[t is shown in the AppendixAthatthe errors introduced in replacing A by
A% and By by Bg* in deriving Egs. (30) and (37) from Egs. (29) and

(36) are not large.




3. TRANSONIC APPROXIMATION

As noted previously the purpose of this note is to study the flow
field in the sonic region in a nozzle for flows which are slightly out of equi-
librium. For such flows it can be shown from a quasi-one-dimensional ana-
lysis that the sonic point occurs a short distance downstream of the geomet-
rical throat. Clarke (Ref. 9) has also shown that, in nonequilibrium flows,
the flow speed at the geometrical throat is always equal to the equilibrium
sound speed at that point. It can also be shown that in the case of frozen or
equilibrium flows, the sonic point is again at the geometrical throat.

It is also known that the frozen and equilibrium sound speeds at any point in
a nonequilibrium flow may differ up to 15%. Noting these comments, one may
derive the transonic approximation of Eq. (21) as follows.

\ | Real Throat

|
/ |
Geometric '

Throat |

/—_ ‘\l{\
, |

—> I[‘___ Region of Investigation

_ Centerline

-

To determine the orier of the various terms in Eq. (21), consider new
variables § , ’Y} , P (8,7 ) given by.

P (x,4)= T h.P(e,) (38)

ad = x/he m=""ylh, , q'= o

where h, is the semi-height of the nozzle at the throat and @ , ©/3%, |
3/3"’) are of order unity (see Appendix C for details about this transformation)
Also from Appendix C



ehe _ Pehe” (|4 TR (38")

\'\& - hu"
and
9(\’10‘\' he®ee) _ Qa\(ke‘ + hw'ueQ*‘) TR
~ - - (1+TR.)

where R'; and R'g are given in Egs. (C19) and (C. 21) of Appendix C.

Transforming Eq. (21) to the new variables by the transforma-
tion of Eq. (38), substituting for Ohy/ ha and 0 (he+ huo.ee)/ he from
Eq. (38') and dividing throughout by the quantity _ﬂ;_ ( ) , one obtains

N

[(l TR A 577]0 TR {T CP“{\ ) (cu)(\ +’T“Peﬂ

)} _hotubor (heerher O(ew)x
o het (30)

Qwa;}{wﬂ[\-(%Y(\w@f_\w‘c‘pﬂ‘ 'r“l’ ®, 22 (Qe) 280 ““P\} =0

One can further show by the use of Egs. (30) and (37) that

(- 3R BR0 TR

H(EF (TR =TS < olr)
RN CAICE AR R A A RS eI

So that Eq. (39) finally reduces to

\:(H'""@E)%E + T‘@?%—) (1+7 R‘,){— PT* R, R+ T R, * ob“)}

—\qog;(\ +TR;){TM cTDEE—”r’ch_P;E?“-\- Y‘c’@m + o(‘\‘")} = 0 )




where

P = 2(A+1)/A"

M= | = o}/
_ 7.0.+ vy

N= Lot (1 + BY &2 ) (43)
_ K

K = Wa Low (hew + hdd'OLeP“)/ hes

If one keeps only terms of the lowest order in Eq. (42), one

h.as theztrivial case LT)“V =0 or C_pE = f("')). Thus to the next higher order
(i. e. Y 4), one has

3 - = % LTE
T = { PCP\a CP“ Qem}—ho@{TMcp‘ee_TlNcP%c%{kT Ce'mk:o (44)

Transforming back to the original variables ¢ , x, Yy,

Sl fop{rener R0

The parameter 8 = K*/af* in this equation tends to infinity to the limit of
equilibrium flow. . Thus small deviations from equilibrium for which this
equation is derived, imply very large but finite values of 3. Hence the limit
of frozen flow given by B~-» 0 cannot be logically derived from this equation.
However, it will be seen that, by putting 8 = 0 in Eq. (45), one obtains a
transonic equation valid for frozen flows. This result can be considered
only fortuitous. Hereafter the limit of frozen flow will not be considered.

3.1 Equilibrium Flow:-

In this limit B —» -o and hence Ed. (45) simplifies to

O.(— 7.0:£1LPE
“—[‘ - Q%> (‘ ¥ )4 Q‘“ﬂ* c(.)w = (46)



Referring the perturbatlon to the equ111br1um critical speed of sound &2 (i.e.

when G, = 7 sé‘. ) and writing Z Q¢0+LP) 4f in Eq. (46) is to be replaced by
Qe , thus,

B+

B

-8 = "p ('/kx -+ w,/y @)

(47)

where B: is now the value for. a‘esg = 4': .

3.2 Solutions for the nozzle flows:-

To study the flow in the sonic region, one has to solve the follow-
ing equation,

L {—PRYGH Gl -B[M G NGB+ Py} = O “9)
where - = A¥+ |
Paz Lt
I ¥
P = ap (48)

w
N = 2&*:‘(l+ Q .)
In the case of a nozzle symmetric with respect to the centerline(i.e., x- axis)
the ¢ -component of the velocity is antisymmetric in while the Z -component
is symmetric. Also for supersonic flow, the perturbation component ¥,
changes from negative to positive values as one passes through the sonic line.
Thus the perturbation velocity potential may be written as

Vi) = Yoo+ L0+ Lo - - -

where ,(Xx) gives the potential on the x axis. (i.e, y=0). By substituting this
in the above equation, one can solve for the functions Y, , " etc. in terms

of ., e
\‘Px =.-k(ox+%—%"[;g +_ézl}_ Lﬂ_x

L&y = kponr -+ %LLP:XY"' g‘&x,
\(u\"xx: "pwt"poxx*' “g;("?ow"pnx{ +‘(lx?oxx)+ %“:(é'ﬁ.xtp:x)r““ Wox Lp;.xx‘* '@x "Poxx)* et
Byy= A0 4 Jg—‘gmx)

10




which gives for ¢,
20 gy, = (AN PR o b+ MY, ,
C—PX(P. = fe—FX( "/3'\]* Ffi)("&z"&n)d’(“’fﬁ M e'/?l m{dX-ﬁ- constant

qo0= e [ [Pl 0 +P3p) (Vo to) +fM fifdx+ AL (a9

where A is an integration constant.

In the region near the throat, one may write, (as in perfect gas flows, see
Ref. 10),

‘-ﬁx =C% where c is a positive c¢onstant

found .. by taking the origin of the axes Xx = (% = O at the sonic point. Sub-
stituting for ¢, , Y,«x in Eq. (49), one obtains,

N-P)* >
LP'(x)—_{(____ﬁ_C_—MC*NCK}—I—Ae'?X (50)

The equation for ¥.(X) is
%—q{ '/3 ¥=(-AN+ Pgéx)( Cox Bix + Frx Yox) + B MY pex

4y = @] [ PLCAN PR Moo o) oMY J0+B)

where B is an integration constant.
Substituting for ¥, Y, , Wi« , Yixx » one has

P = N+ AL c'”[fz‘-"( P-N) + C(‘éP—N)-I-/BM] +BeP (52)

Thus the perturbation velocity potential ‘P¢ X, }) and the x,y components of the
perturbation velocity (Y, , \()V are:

> > - 'f a2
?(X,%):%—-\‘- %[Q%;'MC_*NC;X +Aeﬁ“j+§:{” c3+%3xd‘*[ézc;(7—f\/)+ (53)
e (2P-N)+ AM]+ Bef’”‘}

o~

11



X * 3 x
0 mcr+ L (NCHApe®I+ L AECP-NRe s a7 e EZ(PN) (54
reczp-N)+4M] + Bp el

=i T C_MCHNCE + A 0P Yo (N AR P B (PN )i ()
+puml+ e’} (55)

3.2.1 Limiting case of equilibrium flow:

In this limit A-»- sg,and replacing @ by 4, as in Section 3.1,
M=04& N—?B%i’%where Be is the value at the point where equilibrium critical
speed is obtained. Thus the components of the velocity are:

"y —Cx—/-Be‘“c% (56)

L(? a(Be +/) . 7{%-* ‘LBZ_z B4/ (57)

Be .

Equation (55) shows that the constant perturbation velocity curves Y, are
parabolas.

The sonic line and the line of horizontal velocities are obtained by putting
Yu = \PV =0 , respectively,

Sonic line is x 4+ __e_'i_/._ C% =0 (58)
Line of horizontal velocity is x + _'_géf,_f—/— %‘t =0 (59)
e

Both lines are parabolas and have the common point ¥ =7 =ojas in perfect
gas flows. (See Appendix B)

3.2.2 General nonequilibrium case:-

E O

The(%, oql)-components of the perturbation velocity for the general
nonequilibrium case are,

12




' > > 4 2 pA
Y o=cx _g_.( Ne +A(ggPX)+ gz{/{ pxe [Pecp-n)(i+ FHcOP-MEM 4 (54)

B@ef”‘}

_ultn=pPX” : tpaz, 4
q}-y{_f(}——_M(H Ne. 2:+Aep"+jé_(w A r e PR ECP-N)+c(aP-ND+ (55)
BM) + B e“}

As noted previously, A is negative and very large for small de-
viations from equilibrium (see also Appendix). So, all the exponential and
other terms in /8 in Egs. (54) and (55) may be neglected giving the approximate
results »

= Ve y*
% c ( X -t —%) (54/)
L’(} =NC"%(?C-‘-,AV/’C— + N—LZ L) (55)

These results could have been obtained as well by neglecting the contribution
of the first term in Eq. (45).

Eq. (54) shows that the curves of constant velocity j= 4;*-+ ¢
are parabolic. Thus the initial data curve for supersonic flow calculations by
the method of characteristics can be taken as a parabolic arc with constant
flow properties on this curve.

The frozen sonic line and the line of horizontal velocity are
givenby Yx =y =0 respectively.

Sonic Line:- O= % + NCY/z (56)

Line of Horizontal

Velocity 0= ¥- /’VME + ’lEéZL (57)

Egs. (56), (57) show that these two curves do not meet on the
axis as in perfect gas flows (See Appendix B). The point where the line of
horizontal velocity meets the x axis i.e. (/-: o0 is obtained by putting %: 0 in
Eq. (57),

g
X =4 (58)

13



Since Q*‘*> 4o',M<0.. Also N>O. Thus x* is upstream of the
sonic point. In other wgrds, the line of horizontal velocity intersects the x
axis upstream of the sonic line. This is physically sound since,one should
have parallel flow in the vicinity of the geometric = throat

Geometric Throat — 4 ] SKETCH 2
Sonic Line j
Line of bl ° x
Horizontal
Velocity

This displacement of the sonic point from the geometric throat

~ can be obtainéd by using the boundary condition on the nozzle wall that L@
when the wall is parallel to the centerline or x-axis. If Xris the abscissa of
the throat and h the throat height, then

_ _M _, N4~
O= X7 ~gc + —%

3 (59)
x_r-_- __M_ -— -Mé_ﬁ_

Nc¢ G
If the sonic line and line of horizontal velocity cross, this crossover point is
given by the solution of Egs. (56), (57) for =x, 7 . This point is
2 M
xe 2 NC¢
N PEYY] (€0)
I =“ie

This crossover occurs only if ye=yy (x=xc), where y = yu(x) is the
wall equation.

Other limiting cases:- Two other limiting cases can be considered where the
amount of dlss001atlon "4 tends to 0 or 1 and Correspondlngly/@-PO 0-e¢, 'n
these cases &’; — (e *-a*and B—f"’ A"

Y= Cx %;—.l..,—c*y‘

(61)
_ A“’+/ o Gy A
and ‘f’y = -5 C° %{ X -+ YLz }- (62)
Thus the sonic line is
- A%+ 1
O‘- xX + A’+w Cyl’ (63)

14




Line of horizontal velocity is

- x4 A2y |
0= ¥+ L2k L 64)

- both of which are parabolas and have the common point x = 7 =0 .

4. CHARACTERISTICS

The flow through a nozzle can be divided into two distinct parts:
(i) the subsonic region and that part of the supersonic region which influences
the subsonic part, (ii) the remainder of the supersonic field. Consider a point
Q on the nozzle wall, such that the frozen Mach line emanating from it meets '
the sonic line on the nozzle centerline. Mach lines coming from all points
upstream of @ will reflect on the sonic line and thus influence the subsonic and
transonic part of the flow. Thus the knowledge of the location of the limiting
Mach lines and the point @ will be of interest in the nozzle flows, particularly,
for the inverse nozzle problem.

SKETCH 3 Y
- -Geometric Throa

Line of Horizontal |
Velocity ——

Limiting Characteristic

Centreline
Sonic Point

- C

In the perfect gas case, it is known that the point Q lies upstream
of the throat (Ref. 10). In this section, the situation in the reacting gas flows
will be considered.

4.1 Characteristics for Near-Equilibrium Flow

In section 2.c., the basic system of Eqgs. (7) to (12) was reduced
to

7 - Ao

&”7' T oy

blo

(16)

vl
33

L 7.
&7

15



5%‘1‘1"7*[-“-&(‘)(—0(8) (T)

In terms of streamline coordinates s, n, these may be written as

2_ 1y 20 L, (65)
M-f - l )Tg - 7 2N 7 o

where M’S’ = 7/Q* the frozen Mach number,

7= oA (65)

) =’+;l,(,(o('0(e) (66")
For small deviations from equilibrium, Vincenti (Ref. 6) has
sk owi that the flow may be considered irrotational, thus
_é_?. - 7 _é_’i =0 (67)
N 03

Eq. (66) is already in characteristic form, the characteristics
being streamiines. For the system of Egs. (FE»), (67), the characteristic
direztiors £, , o can be shown to be given by

(T)e., M- (68)

and he coimpatibility relations along these characteristics are

FroT dg 4 2463 %M/,,z-’—O (69)

16




4.1.1 Approximation in the Sonic Region

In Eq. (40), the approximate value of M_f - | is derived for the
sonic region, and is given by

, s 2 (A%
' M&"yﬁ)%( (70)

neglecting higher order terms. If /a_ is the frozen Mach angle 1i. e.M/(z A
then ' Me
cotpu = M==1
Y
> [PY]* (71)

where P is given in Eq. (48).

The approximate form of the compatibility relation valid in the
sonic region is obtained by replacing 4 by a*"’_;-i’g 4}““"‘ L&)as

+ [qu] jg;h% -+ d—gﬁ Pi} Mfdl"z o (72)

In Cartesian coordinates 2,7 the characteristic directions are

%:414(91‘/0 (73)

given as

In the sonic region,which is in the vicinity of the geometric
throat, if the nozzle contour is sufficiently smooth and slowly varymg e will
be small compared to 4 which is nearly 7/ and hence one may approx1mate
for the characteristic directions in Cartesian cbordinates

%,"& i‘}M/’( A (‘P(-px)’./z' (74)

4.1.2 Limiting Characteristics

By use of the solution \f, given in Eq. (54) or (54'), one can

17



find the ~haracteristic curves in the sonic region by integrating Eq. (70). As
thisintegraiior: is a little complicated, restricting our attention to the limiting
characieristics i.e. those passing through the origin X=7 =0, consider if any
rarasolas

X —
/(f1 =5 (75)
can coimcis with the characteristics. The slope of the parabola is
(76)

g‘;-—-z‘c%

Substituting in Eq. (70) and using Eq. (54') for Y, , one finds
2
4= (co+i)P 17)

o« Pc t [P FEPNe

Z =

8
= F(+[[T ) (78)

The point Q on the wall {vkere the limiting .characteristic
emar.ates) ~an be obtained by solving the wall equation

Yo = () (79)

and the left raoding characterisiic equation

3&; = (-2 (80)

5. SPRCIFIC . ALCULATIONS

As an illustration, the flow of pure dissociated oxyger through
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a hyperbolic nozzle for reservoir conditions T, = 5900%and P, = 22 atm.. -
is calculated for which quasi-one dimensional results were available (although
this example is drawn from a completely nonequilibrium case, it serves the
purpose, since in the throat region 7T, and Tydiffer only slightly and is equi-
valent to the partially excited model). The values of T x* were taken from
the quasi-one dimensional results, from which the parameters in %, , tP./ were
calculated and found to be

oA = 3,905, a} = 1.494, B}*= 31.218, a* =1, 340, A* = 9, 487,
e

B}"‘= 11,783, P =1.4797, M = -0.242, N = 1,8378,

The equation of the hyperbolic nozzle was

Yh = 1+(X/38)

where the origin of the coordinate axes are now taken at the geometric throat
for convenience. The variation of the perturbation velocity T b= G-ap*
along the axis is shown in Fig. 1 for various cases, from which the constant
C is determined. Thus the x and y components of the perturbation velocity
were found to be

[

Y
ty

¥, = ¥, =0 giving the sonic line and line of horizontal velocity respectively.
The limiting characteristics were found to be

| Xy = —1.308

3.285 (X £.037 §72)
19.832 (x+0.04+46.037 4/1)

11

o 76/,fs 2.523

The displacement of the frozen sonic point from the geometric
throat and the point where the line of horizontal velocity meets the centerline
were found to be

767/’/1.= -0.85

respectively. The point where the sonic line and line of horizontal velocity cross
is found to be

Xeff = ~1.2

e/

+2.82

I

19




The limiting characteristics, frozen sonic line and the line of
horizontal velocity are shown in Fig. 2.

6. DISCUSSION

One important objection that may be raised about the analysis
of Section 3 concerns the linearization of the rate equation while keeping
terms of order T2 in the approximation for the potential equation. If the
variation of & in the sonic region is much smaller than the variation of ¢ ,
one may feel justified in the linearization of rate equation. The results of
quasi-one dimensional calculation for two cases, where the flow is slightly
out of equilibrium (%53—"4?%), showed that, in the sonic region, a¢ varied by
0. 3% while varied by 3% from the critical state values. Thus the linear-
ization of the rate equation appears justified.

This analysis will give at least a qualitative description of the
flow, if not a quantitative one, and is carried out in the same spirit as that of
.Vincenti (Ref. 11). It may be noted that it gives the correct trends in the pre-
diction of the sonic line downstream of the gometric throat and the line of
horizontal velocity in the vicinity of the geometric throat. Since the curves of
constant velocity are shown to be parabolic, the calculation of the supersonic
flow field by the method of characteristics can be started from an initial data
curve which is the arc of a parabola or a circle. The values of the various
flow variables, obtained by quasi-one dimensional analysis, may be taken con-
stant along this curve.

A similar analysis can be done if one considers nonequilibrium
in a single mode (e.g. vibrational nonequilibrium with no dissociation). In
that case the rate equation has to be replaced by the Landau-Teller eqguation
for vibrational nonequilibrium.

It was found from some preliminary analysis that the case of
simultaneous vibrational and dissociational nonequilibrium cannot be reduced
to a single equation as in the present case regardless of whether one considers
coupled or uncoupled models for the vibrational and dissociational rate pro-
cesses, '

7. CONCLUSIONS

The qualitative picture one obtains for the nozzle flow in
nonequilibrium is:

i) The lines of constant velocity are parabolic.

ii) The frozen sonic line is parabolic and displaced dowiistream

20




iii)

iv)

V)

vi)

vii)

of the geometric throat.

The line of horizontal velocity is parabolic and meets the
nozzle centerline upstream of the frozen sonic line.

The frozen sonic line and the line of horizontal velocity meet
on either side of the nozzle centerline, in case M =~0O

(i. e.a,;g Ge ) or do not meet at all as in the example given,
in contrast to the perfect gas flows where they meet on the
nozzle centerline. In the earlier case portions of the hori-
zontal velocity curve near the nozzle walls will be supersonic
while those near the centerline will be subsonic or in the
latter case the whole curve is subsonic in contrast with the
perfect gas-flows where the whole curve is supersonic.

The limiting characteristic which divides the nozzle flow into
two distinct regions, (namely, I. the subsonic flow and that
part of the supersonic flow which influences the subsonic

flow, and II. the fully supersonic flow) is parabolic and
emanates from a point on the nozzle wall which is downstream
of the geometric throat in contrast to perfect gas flows where
it is upstream of the geometric throat.

The initial data curve for the computation of the supersonic

flow by the method of characteristics may be taken as aparabolic
or circular arc with constant flow properties on it which may

be obtained from quasi-one-dimensional calculations.

It appears from a rough analysis given in Appendix A that
the qualitative picture for simultaneous nonequilibrium in
vibration and dissociation may be similar to the present
case. However, the partially frozen speed of sound used in
the present analysis is to be replaced by the fully frozen
speed of sound.
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APPENDIX A

DERIVATIONS

Rate Equation

It was shown in Ref. 5 that for dissociation and recombination
of a pure diatomic gas described by the process |

AZ+X%2A+X | (A.1)

where Ag and A are a diatomic molecule and an atom, respectively, and X is
a third body, IQ , -, are the dissociation and recombination rate constants
respectively, the rate equation for the net production of atoms in terms of the
atomic mass fraction & , may be written as

D _ POt m G =
Dt = [ > kL2 “’] (A.2)

mg  Lzp
where M, is the mass of atoms per unit mole, P is the density and K. is the
equilibrium constant defined by

£
K.= 7,2-1- | (A. 3)

In this derivation the atoms and molecules are considered to
have the same efficiency in causing dissociation. If they are considered to
have different efficiencies, then the factor ( '+« ) in Eq. (A.2) has to ke re-
placed by (1 - & + 22 &) where A is the relative efficiency of atoms and mole-
cules. Comparing Eq. (A. 2) with Eq. (1) in the text, one finds

b= kP4 ) M (A. 4)
and LiP,p, ) =—Z’/’—§-Kc ——:H{;“ -/ (A.5)

It may be noted that L is dimensionless and /4 has the dimensions
of time and is taken as the characteristic chemical time 7z, . If '2‘37_ is the
characteristic flow time, then for ’Z?/Q, —> O , one obtains the limit of equili~
brium flow and for T4 ~%, the limit of frozen flow. Also in the limit of
equilibrium flow [ - ¢ , giving the equation for the equilibrium mass fraction
of atoms as

Ae . Make
~e ™ 2P , (A.6)

In Ref. 5, an expression for K. is obtained from thermodynamics
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as K. = _“%%. ’,;T;;)}é( /- 8’0"/7') o~ (A.7)

and )O = g"'l (—%)% V)’ls'é Q’-"y%‘gi‘ = constant (A.8)
02 .

where 0,1 ,Qv, Op are characteristic temperatures for rotation, vibration
and dissociation respectively, m is the mass of an atom, k, h are Boltzmann
and Planck constants, 90, )njo,, are statistical weights of the ground
energy level for atoms'and nYolecules respectively.

Expressions for K, e, Ay
Now expressions for these parameters explicitly in terms of the

state variablespP, p ,¢ , T will be derived. In this Appendix, the function L
is obtained in terms of f T,X whereas in the main text, it was in terms of

P.P,oxX.

Using the equation of state

va=/0QT(I—+D() (A.9)

one can write

LpT )= L[TPPxLP]=L(P. L) (A 10)

A=l v Ao +(Lphr g dp HL oYy T

= Lud ot Ly dp 4+ La[(T) o AP+(T),  dP+(T), , dx]
=((Lp vt (L) Wy et +[( L) HLp Ty fdp+ (L) (T)L P
=(L'¥)’P'Pdd -i‘(Lf)P,o(d/) +U—P)/o(dP (A.11)

LLO,,,f=(L.(),D,-r+(L T),o,.‘(Ta)h/D . (A.12)

From Eq. (A.9)

CT"‘)"’P I+o( | (A.13)

From Eqs. (A.5) and (A.7) (L‘ —= - _z K, 2=« (A. 14)
. ¢ o(?

A.2




(LT)fOC—_ 7 (I-o) K. f; (£ 4--2—-@_7‘_5) (A.15)

2p
Thus '
—_ VK 2« _ T m L= k & -5
‘()p,o 25 op T 2R {x = (4 + 5 )
=—Make 1-o¢ ([ a+3x(i-¢) , & s]
2L o«M14e0) 20((/ o)
W(L) = -4 f’(”"‘)[ + &< (A.17)
«L'p,p d —5— 0((/' ?’J .
The enthalpy h is
| %(T,O()’; Z’g—o-(RT+(1-o<)R£+o/P&p (A.18)
A (T e) = A[TPrx),x]= 4 (P, P ) (A. 19)

dh = (”LT),( AT + Ao ) dy

(A. 16)

= (ke [(To), AP+, dp + (T, pd] +(h)rd
= ATLTeYy P + DT P + (AL TR, , +h)

=‘(’£LP)/0,0(dP -+ (’h/)p,( d/ ‘f‘H\rc()p,‘Pdo( * (A. 20)

Similarly the local equilibrium mass fraction of atoms e is

Ke = Metf,'T) = g [,D,T(p,p,o(e)] =o(; (P.P) (A.21)




where  0e ( P,‘T‘) is given by Eq. (A.6) and
Ao =(Xep)yp dp+(cler)pd T
= et Af + (D(QT)P[(Tp)P'%dP-*(_TIa)P' (P T, Aok
Acte (1= (e Yp(Tdp ) = [ (K)o +(ter YTy g AP+ (Bler) (T, 0, AP
4ol = [Kep)H(Kero(Tp), ] 4P + (e (T ) . AP
[ [- (D(e")/"(—r"(e)b,pj

= @(ef)Pd/? + (e p>,,dP (A.22)

Thus from Eqgs. (A.20) and(A. 22)

£y 4 fOep _ B\ T 1~ X o (Tataly J + (Aol T . + o)) [y + e (P ]

fp (4(7)0( (—’})PA["(O(CT),D (‘To(e)’,'/,]
_ (/h-r)x[ﬁﬂ)p,x +ﬁ«)|=,p( Aep)r]+ e )-r[((’("f)v*' (0/'9;(7/;)}#;,
Q{-r),( (-Tf)p'q [' - (O(e'r)f (_To(e)P f] (A.23)

From Egs. (A.6), (A.7), (A.9), (A.18)

(Ker)p= %é%%z(% + Bcf) (A.24)
(o) = '%%(,'%(3; (A.25)
T p,p = = T/ 1+ (A. 26)
oo = =T/ (A.27)
Chode = R{HE (,,a{)g__,zzj (A.28)
o)y = RT (E + 92-‘1-"2‘) (A.29)




Substituting these in Eq. (A. 23) and simplifying,

Ap +haOep  _ 7+30+201-0%% 2 olel1—de )G+ 5E)
% e  I-ofe ) [7”"(+u AL T2 +d +53

A. 30)

= (’K"-ﬂ"‘&kep) [ oé(/—o(e‘)(-i—i-&_;_f)l} N
K ’\PLo( "ﬂﬂ' ‘ &d‘mao( 7_‘_50(_*2'(/’“)% (A.31)

The frozen sound speed is

a(; =-QAP§;":)P‘.’X‘//O (15)

ARy
(.{LT)a((TP / P

_RT)[7+30( +0- a()dij

T ReRE ) )% )

—[7434 +2(I‘X)T£T_ L4_"_2( I4o)RT (A. 32)
,*'0[5-/*0(—:—2(/—0() ] A

where A = '—_"_7[( 5to) + z(/_,()gé_—ﬂ (A.33)
- A2
T 5
The equilibrium sound speed is
2 Mj’)P,oC+ ("o( )b,j)(%t‘./:)?
== 18
ae (’/lp)ﬁ{"(‘{o()k};(“/ep)y‘# (18)
G 4/’)7"'(’(‘-’7)(7;)# «

(Al To)p o™ [ H\T)"(‘C‘) |2 S’+M")1] 1= (Kez)o (Tue)rp

AT, ot o) (T, Hh )] Ceretihee _ 1
fu AT b / e P Tl P

_ A LTt (L), p(Aeph] +bh)y [Xepe + AedflTp), ]

__l__é{\l\—r> __/,Je\/_‘l_,___r\ +/n\/T\ I
P T TR T RET [ Cladp p itz Lp Jp |




Substituting for the various quantities and simplifying

Q= 113« +2(/-x)F% +x (1-)(F+ bo-% §-
e (B'K)[Egi('f'(l—p()é__‘%]_*o((/,a()(‘z[:_l_&——rf)a—

— A2 ol f-w) (B4 Gocf - (1+4)RT
(2=} ( 1#) )Z/*'( A+ o(C/—o/)(-z{-+9‘L;s

= A+2 +ol-w) (F+ boE y- (4 )RT
Bf’ '

e QI+ ORT (A. 34)

I

where : By -£\*>
B = %6[5+d+3 (:—o()%]—!—a((l—m("é* —-—,-—)
= ..__.2’;( (1t) A+ «(1-2) (£ *%) (A.35)

By

(3=J§:_=-J_M[HM'(/—«“)(%*MY] (A.36)
R (#*+2)

Estimation of the errors in the approximate Eqs. (31) and (37).

In deriving the relations beiween sound speeds and flow speeds in
section 2.d,

2 ptt) 2 > 31)
z a.z Z z\- *2
4
A and Bf in the denominators were replaced by A% and Bd-* . The errors

involved in these approximations are evaluated here.

Al T = {5+t 42 (1) %][74 304 2 (1o + 252 ) (103004 2]

_ A 24 (A.37)
(A'42)(14¢) RT




where

and

d€ O \E_ by o
& "d_z(-r'(e’v??_o)e g et

Expanding A (X,T) in Taylor's series about o *T* , and keeping
only first order terms: -

Atx,T)=A(X? T*)+( )O( +( ) (A. 38)

From Eq. (A.37)

Zm%A 17A+Z7 —&7(/11‘2) 1&7(44-0()

A’ 2 LY U
A%ﬁ ‘QL+J_A-A+L72(_ T-?LJ
I B Ve
BéAm B ('*oo Z? Ho o

- (/+o<)‘('+ -f)
> Qu/
¢ =45 =E)e T

aTt
L, glgmn) | A A. 39
<l%) I"'o( 4’*(A/*+Z,)(H0(’9L+ -:ii—} (A. )
1A _ L QP\' Lah _ L 1 N
AT =W STTRST T TweRST
d _ (i) A2
é‘r |+.>< AT
¥ + 4(1- *) N %
3-?) =4 L uu*)A”‘(A "'+.>.)£T7 +7§'] (A. 40)
A.7




¥*
- I PeisD  _ hg 1L TLM ) 2T (- QThES
’ A(K'T)— A { I Ha("[, 4”(/\' 2,)( H'o(') _'{K] T [ “L* * A"‘(A’#Z)(“aﬁ

where

I

T Crere="T %’_‘)* (g)zea”ﬁ*[%(e%ﬂ N -2] (A.41)

- (5tat+201-)BE) 4+ (1= )b+ FF 1.5y
By T= T+(1-)slBJ(A. 42)
i 743+ 2(1-ot)E ¢ + L I-*)(E + &p—S) )[ +(1-)s QJ

- S A
/Cay Bf—Lo-yC—&?D—I-Z:?ﬁ/R

L 2Bt _ | dc 1D P
B do ‘i;d Dbo(+ﬁ{%'(

2L _3opu + 26 (-3 +20)+(1-2a) (4 + L5

§§-= 3-R&,+ (- 30(‘)(%4— 2 —£)? (A. 43)
-—é—é_B_f_ _LTL _L_ | >A

2 = z(:-o«>(a-o()sﬁ+zx (1-) (f + 2ZE)(£2% _ 5x)

e CRL I S RN

Expanding B, (¢, T ) in Taylor's series and keeping up to first order
terms,

By, T) = By (% T4 + o (3B 4 ()’ (A. 45)

Substituting for %—3— and%%f—

By ) =By {1+ (5BS), R 28] TR 30 el e




It can be shown that for po > 97,/7‘ Z0
O< &7 2| (A. 47)
O% g £ |

and  TE _~0

Considering only cases where 95/7' is equal to or less
than one, ¢ /77 and £, may be replaced by unity for the error estimation.

Thus it can be shown that

Ao Ste+2(1-) Er 7- (A. 48)

~
(/+e¢) [+

is always greater than 3 which value it attains when « = 1, and always
less than 7 which value it attains when @ = 0. From this

32 A'(AF2)(1+00) 230 Joh o< = | (A. 49)

Thus the 2nd term in the coefficient a'/1+a* in Eq. (A. 41) is always less
than 0.54. The 3rd term in the coefficient of T'/T* in Eq. (A. 41) is
very nearly zero.

Therefore(“\g(/h) - 3/2—T+ QD € ~ 05+ 9@/7’
3% 11(-% e+ % 6, 45+ (0:5+6/7)
(A.50)
45t 05K+ X 6y |
Also,
7+3°(.
—I+Tf;'r +i- ¢ )E/7+°(90/ﬂ+[7f3o<+0 “)aﬂ 6, /r (A.51)
7+30( (/’0() 2‘/7‘1‘-0(60/7- 454 5n<+u9,§—|

since the denominator is always larger than the numerator. From Egs.
(A.49) to (A.51), one can show that the coefficients of o'/1+a* and T'/T*
in Eq. (A. 41) for A, are always less than 1. i.e.

g (14 EX) +
re——T) o
A (A2) Q4o W




S —T*‘A_T" -+ 4’("0(*)7*27:
4* A A 2t x?)

In a similar way, it can be shown that the coefficients of o “and 7’
in Eq. (A.46) for B, are also less than unity. Thus replacing A by A* and
B, by B._\:"‘ in deriving Eqgs. (31)and (37) in the test will not lead to large errors.

Alternative Derivation of Eq. (19):-

In deriving Eq. (19), it was assumed that the dissociation is
only slightly out of equilibrium. This restriction can be removed as fo}llows:-

Consider the Taylor's series of the quantity Y.L in Eq. (1)
about the reference state values. Then

Y (Py ey (p, 0,0 =y + (W D B H¥ 0@ + (Wi, & (A.52)
anslogous to Eq. (3). Then

D \ [
%;Q%%j: B_{-,WL):(\VL)P* %!‘2: -\-Q\JL.)Q,%% + (WO, %Bé' (A.53)

From the energy equation, Eq. (10) and Eq. (13),

D _ Dot __(h, =P\ DP _ K
ot - Dt = —E;‘:—)E‘E T,‘f %% (A.54)

which upon substitution in Eq. (A.53) gives

D ()= [(w Ope =91 {2 =Y "H be E\P Dee ~(WL).. hhﬂ e

= (WL ,{[ é‘-\)\_)g —(hy -\/@)]Q_E +[(WL)Q* e \29_} (A.55)
y W Pt LwL)y halDb

L) o hu

Now define ag, the local equilibrium value of @, as that given by
L(p,0, )= 0 (A. 56)

Then
A ¢ (P,Q)Ole\) L(P)Q, Ole.) =0 (A.57)

A.10



as long asy is finite. The total differential of Eq. (A.57) gives

(wo), dp +(wWL), d® +(wWL), doe =0 (A.58)
From Eqg. (A.58), one obtains
Lep = — PL)e (A. 59)

T WL

R G o .
hep = %—e-;u (A.B0)

which upon substitution inEq. (A.55) gives

hy - Ye)]DP . [ .. _hel|De
_ET:k_DD;"E) = (WL)OCA{[—QLQP - ('—LF_-)] _D—t- + Uep h&] Dt}

o

_ he + haOlee) [ he+ hySler = 0 DP | pe
= wy) ( he ﬁ{ e, o 5%

=—(WL)‘*,( e +h}1uu“){ -'—19'61?. \_)3{' -0 d'w.—(i }

LI O R ]

A
=Y Lol 8 tw)p(hﬁh}hm dvi- i ge] @

by the use of Eq. (8), (9) and the definition of a2 given in Eq. (18). It may be
noted that Eq. (A.61) differs from Eq. (17) in the text by the factor(] + Ll\l"‘t )
u_‘

Finally eliminating Da/Dt on the LHS of Eq. (A.61) by the use
of Eq. (16), one obtains,

R

in the place of Eq. (19) in the text.

Vibrational and Dissociational Nonequilibrium:-

In any real flow, the vibration as well as dissociation will be
out of equilibrium and one would have to deal with fully frozen characteristics
for the calculation of the supersonic flow region by the method of characteristics.
The analysis of the flow in the fully frozen sonic region is much more complex
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than the one considered in the text which is for the partially frozen sonic
region. However a general idea of what one might expect from the results
of the partially frozen flow may be obtained as follows:

In this case either the vibrational energy &, or vibrational
temperature Ty, is to be taken as an additional variable. Thus

h=h(Te,&,) = h(p,e, o, ) (A. 63)
Bh (hP) +( 0) De . (ha) L o ( ) DEs  (A.64)
Dt e,o,t, D'E Py, Ey Dt »eEy N, Dt 127 N XS Dt
which on substitution in the energy equation, Eq. (10), gives
De DE.V -
(he- Vo) -E—E + he Y ——‘ + \'\a, =0 (A. 65)

where, hy, hp , h, in Eq. (A.65) are different from those in Eq. (13) in the
text whlcﬁ contain also the contributions from he, DEv where, &, isa
function of T alone, i.e. T = T;’ . bt

For uncoupled vibrational and dissociational nonequilibrium,
Eq. (A.53) for D/Dt (Da/Dt) is still valid and &€, satisfies the London-Teller
equation, namely,

D&y _ Eu— & (A. 66)
bt o

where, 'T:, is the vibrational relaxation time and £« is &, evaluated by replacing
T, by T. Let T, differ from T by a small amount, then

ﬁ.
-‘-v = T + T'
(A.67)
E'V -_— &p -+ 8..
Also ht.v - he.. - (\—u.)
Thus ' DE., _ Dée D¢
hﬁv t = ha. + + heo Dt -
= DP DO , - Dot DE
=hetur (82 + T B TR )+ha BE (a.68)




where the subscripts denote differentiation. Substituting Eq. (A. 68) in Eq.
(A. 65) and rearranging one may write

(h,+he € T) B2 =-(hrh & T - 4)-(hrhE TR -h RE L e

Substituting Eq. (A.69) for Da' /DT = Da /Dt on the RHS in Eq. (A.53) and
making use of relations (A.59), (A. 60), one has

D (Dot he +heet erTe = /0 DP [y o het heafurTe | DO
Dt( ) =twiy, {[" ;\f\i‘aa}r& ]Dt [‘°+ ha+ heuur Tu | DE

[ hea ) DE!
h**‘heﬁas‘- «) Pt

._( q o "\v*“’\eséuﬂ TG-*-]]| bDP e _ }‘1;.. D&'/Dt
el T T e Ear Tl |32 DY DE Rigw S b B e tted)

- he+hm&m‘ﬂ>] 1 be _ DBE
(v, [de" o+ ey Eor T (a: Dt Dbt (A.70)

Since the coefficient of D&'/Dt can be shown to be smaller than unity and a.
is the equilibrium speed of sound given by

o = \‘\e + hyOee + hew E—mT(TO + T &;e) (A.T1)
e =
hr + ha Qep + hg., Tt (—‘-p +Tu.0~ep)"’ /9

Using Eq. (A.65), the RHS of Eq. (A.70) may be written as
D [ he [(he="e)Op , D@ , he DE
t| hes he bt Dt he Dt

o~ _E_ bL 4 EE — _D__p. (A.72)
~ Dt he O:t t Dt '
where the fully frozen speed of sound af is given by

Q'\ Q)P)‘* Ev

£ “ /o (A.73)
(hpYeme, =

D DoL)
Dt

at

and the D&v /Dt term was neglected since it can be shown that its coefficient
hg,/ he is smaller than unity. Equations (A.70), (A.72) together give, by use
of Eqgs. (8) and (9)

Al4
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One may note that the expression for a2 given in Eq. (A.73) explicitly
excluctgs all vibrational energy contributions and thus it is the fully frozen
speed ‘of sound while the equilibrium speed of sound given by Eq. (A.71) is
the same as before since it includes the vibrational energy contributions.

Since Eq. (A. 74) differs little from Eq. (A. 62) except in
the definition of a;, one can accept the vibrational-dissociational nonequili-
brium results to be very similar to that of vibrational equilibrium-
dissociational nonequilibrium results.
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APPENDIX B

TRANSONIC FLOW IN A NOZZLE FOR PERFECT GASES

The flow field in the sonic region of a delaval nozzle for per-
fect gas flows is-described in this Appendix as a ready reference for comparison
with the reacting gas flows described in the text. All of these results are
taken from Ref. 10.

Let? ., a .+ , 8 Dbethe flow speed, sound speed, specific
enthalpy and streamline angle respectively. It has been shown in Ref. 10
that a perturbation velocity potential Y can be introduced such that

?x = a'*é'»’"“IX)
1= &Y

(B.1)

where a* is the critical speed (i.e. where {= a)and %.,¢, and 4,, ¢, are
the x and y components of the velocity and perturbation respectively and ¥
satisfies the equation

- (é’_*’)% Yex V,,=o (B. 2)

The solution of this equation valid in the sonic region cof a de
Liaval nozzle is shown to be

=X 44 )Y >3 _YY
TH+O+ RS vy (B.3)

where C is a positive constant and ¥ is the ratio of specific heats. The x
and y components of the perturbation velocity are then,

%=cx+(7+|)c—%¥1 B.4)

A LP,:(}?-H) (‘7 [x -fq.ﬂ)c_‘_fj (B. 5)

from which the sonic line is given approximately by putting Yy =0 as
0= Y-F(Y-H)C’-f?é (B. 6)




and the line of horizontal velocity or the locus of points where the velocity
vector is parallel to the nozzle axis is given by putting 'pa =0 as

From the approximation ¢ ~a*+ Y, , it will be seen from Egs. (B.4), (B.6),
and (B. 7) that the constant velocity curves, sonic line and line of horizontal
velocity are all parabolas.

1t is also shown that the characteristic directions are approxi-
mately given by

-y )
%ﬁ_—,—(yﬂ)/(%)/"‘ (B. 8)
L4
along which %’and § are related as

7 /\¥e
Y+ % (—27) % 0 = constant (B.9)
where %' is the deviation of the velocity from the critical speed .
i.e. = 4§ - a*&’w
7= q - asdily,

From Egs. (B.4) and B. 8), two special curves which are
characteristics are shown to exist and are given by

Y+
Z = —-c 2 (B. 10j
¥
X _ o V4! (B.11)

The first curve (see line OB in Sk. 4) is known as the limiting
characteristic since it divides the flow into two distinct regions:

I) that in the subsonic part of the nozzle and that in the super-

sonic part of the nozzle (AB) which influences the subsonic flow
and IT) the remaining supersonic flow beyond B.
It is also shown that the sonic line and the limiting characteristic meet the
nozzle wall upstream of the geometric throat C and that the sonic line and line
of horizontal velocity meet on the axis as shown in Sk. 4. Any changes in the
nozzle contour downstream of point B will not influence the flow in the region
upstream of the characteristic passing

B.2
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@‘etric Throat

Perfect Gas Flow

A BiC D
y
Characteristics
* Sonic Line—\\A\ y b ‘
\ AN O . o
Subsenic Region \ Line of Horizontal Velpcity

LY

Supersonic Region
Flow Direction ——»

/—Centerline

SKETCH 4

through B, whereas changes in the nozzle contour between B and A will in-
fluence the sonic line and thus affect the entire flow inclyding the subsonic
region. To give an insight into the characteristic network in the region be-
tween the sonic line and the limiting characteristic, an exaggerated skeich of
this region is shown below. The characteristics are inclined to the stream-

lines at the Mach angle T 4 where an M=-L. For M=| , u="Ty, andas
M increases_M dechThus characteristics
A P/ 2.0 2 B/
. ‘ { o
- ———-—— Streamlines
W Limiting
isti - Characteristics
Sonic Line @A\ Characterlsﬁtc/ ____}
—\ —— (two families)
Flow Direction \ \
—p—\\\
Sub sonic \ Supersonic _—- -
B =
\
\
- - Centreline
0
SKETCH 5

at a point & on the sonic line are perpendicular to the streamline passing
through it whereas at a point p on the nozzle wall, which is also a streamline,
they are inclined at an angle slightly less than T/, , and along each one of
these characteristics the changes in ?’and 0 are related by Eq. (B. 9) :



Comparison of Reacting and Perfect Gas Flows

For a perfect gas, the specific enthalpy # and the sound speed
are related as

_ _a>
h=F (B.12)

Comparing Eq. (B.12) with Eqgs. (26) and (33) in the text, one
may note that

%—l=% (B. 13)
- 2
Yo —1= By (B. 14)

Egs. (B.13) and (B. 14) may be taken as the definition of Y; and
Ye . They may be considerad as fictitious isentropic indices for partially
frozen and equilibrium cases in reacting gas flows. The true expressions
for these quantities in the present cases are given by Egs. (A. 32) and (A. 34).
From Egs. (B. 13) and (B. 14), thes parameters P and N given by Eq. (48) in
the text will be '

PO SR
P: 2 A* b= ,,‘ + - ’ ’ \B.l5,

2 ) 2
= -—g%'—z iy fqﬁ*" d* ¥4
N aé* ( ' 5{* @'%) = ;ﬁa[z + %__(&*— tj (8. 16)

In the limit of equilibriura flow, (see Sec. 3.1), N reduces to

*
- Be+l _ * s
A N - JZ\— Be - (Z-I-VC —‘) = zw+/ (B. 17)
l*‘:’."i(\ ) A
Substituting Eqs. (B. 15), (B. 16), (R.17) in the various equations giving the
velocity components, sonic line, line cf horizontal velocity and the limiting
characteristics, the similarities may be noted.




APPENDIX C

Existence of a Velocity Potential

For small deviations from equilibrium of a reacting gas flow,
the flow may be assumed to be nearly isentropic, giving rise to the existence
of a velocity potential. This may be shown as follows:

The entropy equation for reacting gas flows is given by
(Refs. 6, 9)

TgradS = gradh-fgradp + Qgrad « (C1)

where T, S, h, @ , p are temperature, entropy, enthalpy, density and pressure
respectively, o is the atomic mass fraction and Q is the difference between
the specific chemical potential of atoms and molecules given by (Ref. 5)

Q- RT L[ 2@ (T) e (e (1zy)] e

where {}3‘\. is the characteristic dissociation density, 6,,, 84 are characteristic
temperatures for vibration and dissociation, respectively, and R is the gas
constant per unit mass referred to the diatomic gas. In terms of the local
equilibrium value of g , Q takes the form

: 2
= RT lo [ Xe 1= O ]
By Scalar multiplication of Eq. (C1) by -c'i , one obtains the variation of
entropy along a streamline as
- . ->
. - T DS — Py — Dd
Tq.grad S Be =Qq-.grada = Q 22 (C4)
Since from the energy equation Egq. (9),%‘%—-\5 %% = O, where, PD_t:a . 8rad 3
: ,‘f* - Eq. (C4) may be written using streamwise coordinate s as
35S - Q 3¢
°s T s (C5)
- e R W
- 08[|-ot. ot 9% (Cs6)
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as given in Ref.5. Toevaluate the entropy change along a streamline in terms
of the perturbation parameter T , let us write as before

o= Ol (V+ TA)

o~
S
=3

~—r

o, = Ox (V4 Tole) (C8)

e

so that o' and ®e are of order unity.

Then do. = oy T ao (C9)
_TON\O(
and _ Qe \=O _ aﬁ(‘*—"‘ot'e)z (-t ! |—<x*)
S (- )t e

[ir2rair o[-z T o(T?) |1+ 1‘%%% + oL'V‘)]

(|-—I_gs_9_(_'

| - Qlw
- o Sla™e | Ola O ,1]
_[\+"r(zou 20 4 e I_(M)-vou')

)

=T (e -w)(2

= [\+"'(°"¢-°L')(____7I‘°‘*) + 0(’“‘)] (C10)
and 1og[ o “d] ’t‘(cxg-oa)(z °"“)+ o (7?) (C11)
Q

by series expansion. Thus the change in entropy dS along a streamline is
obtained as (multiplying by ds on both side of (C6))

d(5/R) = T* %el2=Le)(yi o) da' = 0(T?) (12)
(1= )
which shows that the entropy change along a streamline is of order T? for
deviation of ol from ®y cof order ¥ as long as |- 4= O(!) while for

|- oe = 0(Y)

d(s/R) = o) (C13)




Thus for | = Oy = O(1) and for small deviations from equi-
librium, the flow may be considered tc be nearly isentropic and hence a velocity
potential may be introduced.

Transonic Approximation

In simplifying Eq. (19) or Eq. (21)in the Sonic region, a trans-
formation of the coordinates, Eq. (38) is introduced wherein the y coordinate
is distorted by T'2 while % is not. The reason for doing so and the relation
of T {o the physical quantities of flow will be considered here.

Let us write the velocity a * as a perturbation from the re-
ference state velocity cg" so that

4. = QT (1 + TW) (C14)

By = 4TV (C15)

where 1  is of the order of the velocity perturbation from q* and W' and
' are of order unity, similarly let

e = e (v+Te)

(C16)
T = T*(1+7T)
& = &* (l -+ TOL.)
Then '\'\9 ,hu,ﬁ... may be written as
\'19 = hp* (\ + T hp')
| (C17)
hot = h“& (\ <+ Thu‘)

oo = Olgp» (1 + ']'0(39*)

so that e he _ 0" het (eve' X1+ The) _ ke {H.T(?'-\- \'\9'—}1‘)+00"')]

ha hq‘ (i + 7T hu') has
or . ) o (C18)
AQHOJ_ p"h?‘ I+ TR \
ha. hu“ (\ R‘\)
where R = o' 4+ he. - hu. (C19)

C3



Similarly

R ( he+ haOlee) - Q’(I+’T’9')[ he*(‘*‘"r"\e') + hav Qeee (147 h.ﬂ( [+ Tee )]
h hu‘* ( l""rhu’)

~ @ (hee + her Qleet) (1+ TOX1 - 'T'hu)[w'r) hehe® + hae Xee* -\-0(9,]
hg("

(h(""\'h O(ee)

_ 0% (her + hye Ole*) (14 'T':R',_)
= hoe

(C2c)

where R, = ¢+ het ( het — hat) + ht Qe Olee

I¥e)
hee + Ry QLee*

For the velocity terms,
d‘wa = q*[%(\+'\‘u')+ (’Tu*)] qQ*vT ,ax-\- .63) (C22)
D (4%)=(3- rad) 45°

> {l-\— 27T+ T (U /U‘"‘)]

= q* [(\+'1‘LL)3— + TN _§_—_‘ qs* LH— 2T W+ T2 (Wrr )]

%{(\ 'I‘UL)[ZTBU- +z~rt(ua__+u— au') +27? u'a_x_)v

9Y
s (W Qﬁ + U'%')}
= a:;{l'rl_ +Z’T"[2u. '%__-\-U ('GD' + %\.')8)]‘*"]‘3(&%1*_”'%_\5)(011_‘_‘ U }

- q“{'r W e fow U (R %%)]w‘ (g iz Yo

wr'?
K 9 o
Frcm Eq. (28) in the main text (C23)
2 2 - *2 b Y N
q* + A o, q4*® + A" a} (C24)
or
2
ar = q**— d* + A" ay*
A

C4




as shcwn in Appendix A,

A= A* (1+TH)

that
o o — O\*“‘[\— (1 + 'T'u!,) T AJ’"'-\ + AN ot
£ A* (1+TA)
= ar (1=TA) =" (27w + Tt + TP uY)
2 o [ -T (A raMw) + 0@')] (C25)
Similariy, q* + BoZ = q** + B al (C26)
S0 that = o i-T(B+ ML) + 0T )] (C27)

"

*»
Sub stituting these results in Eq. (19) and writing %; M¢ and QT =M R

one has Qe

L+ Tuw) 3y + Tw! 3%}9 S+ TR) AT T(RE + 3

b}
[q*TQ'aU‘--\-B__) q* M*.L{'T U O(:T' ]}—J (C28)

Keeping the lowest order terms in " on the LHS and all cthers on the right
hand side, and dividiag throughout by g“ 9* hg“ and writing @ = Kw where

® u‘ O:F
Ko = Palo (h(;q + o ‘14.%_.) h (C29)
e"

one obtairs
S{r(-M7)2L + 'Tﬁg-} p"r{%%(l-m‘: +a%}
) ) »2 ' a W
—Tl[m%t-\-u_g.][(ww\‘)%t_h ’T.&-{R\__l 3(_ g}

~ A

—TiMe 2w g - oL+ B ]+e>'T Mo 2w +u (%H&i—\—%!,g

+ TR, [U‘ —L‘l;:-_ %‘%] OUA) (C30)
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Introducing the perturbation velocity potential ¢

VIS

? U' = ¢Y
and the transformation
¢ = p:f.
*z
m=F

$(2,m)= B dlx,y)

where, & is given in Eq. (C29) and |/p has the dimensions of length
!
W=d¢ = 3E IDxY) - P,

CE Y
a= _’g%acb(i‘%) |-—M‘n' &
£ T
l“aé l_ ) '_ 9 ! - ) &
B=RW =% v WHH eV
LW PN Ve
%_ﬁ_az?g_g,]\ MY R

Suk stituting these in Eq. (C30), and simplifying

gr(t- Mtl){%g@’ee + &) -] ——M:: H

mpv e T w]} =

L% (B Bl - 26T MR BT (-M) § &y )

2TV (3T, (oM EF,]

+e:‘T1(\—M:‘)R1[\\— Me R+ 5 ]+ o (T?)

whet is 2gsentially achieved by this transformation is as follows

rised trestment of Vincenti

Cé6

, such that

(C31)

(C32) .

Then,

(C33)

g \-—M?){% %’é’ + l‘ —-M:* $~; %5]@’;;* a—:v")\— (-

(C34)

In the line-
(Ref. 6) the terms on the LHS of Eq. (C30) or




Eq. (C34) are kept. Thus comparing the various terms on the LHS,

2l®q) = 0(%,,) o 2 =00 (C35)

- | — L — _ ®a2 _ _
EENY O[\‘IM:“ q)eel °r %T%fx = O(F) = O1) ey

Also Fe= 0(Bpy) o & =0(1%) (c37)

Furthermore, the terms on RHS should be of a higher order compared to the
terms on LHS. It may be noted that all the terms on RHS contain $* as do
those on the LHS. However, not all of the terms on the RHS contain(\ —M‘}.z)
which appears on LHS. Also terms on the RHS containing(l—M:z)are already
of order YT*while the LHS terms of order T’ . So the only terms to be
compared are those which do not contain (l -—M:" . Thus comparing these
with the first term on the LHS gives the conditions for the linearisation to be
valid, namely

282 T2 M By By

| (C38)
BT (1-MP) &, <!

28 T M{* g Beee
2 .y < ‘
p ,T, (\_M‘l) ¢EE$ < (C39)
2 &1"‘1 :7. EE:;
B* T (1 —M:* ) Peee

£ | (C40)

Y * % w2
Since & = O(ll $“-§ =O($;g) = 0(43;) and also M.F = O(Me ) thus
all the conditions (C38) to (C40) simplify to the single condition

2TME B,

(C41)
(V=M .
since $‘ is independant of T and(l—-M:_) this condition may be satisfied
as long as I-Mf*= o{1) or o(T7¥) . But as soon as }-M%t?* = () , this

condition may not be satisfied and one will have to keep the three terms con-
taining M}* M” in the RHS of Eq. (C34).

The perturbation parameter ‘I° may be related to the physics

C1




of the fiow as follows:

Let h= (=) describe the shape of a nozzle in the vicirity of
the geomeirical throat, the X-axis is along the nozzle centerline and the
origia at the throat. by

\/

he

- st — ¥

T~

Le: he bLe the semi-height at the throat. Then expanding f(x) in a Taylor
series about x=0 ,

gy

h = ‘F(o) + :x_'(:'(o) -+ %’f 'F"(o) +_3§ \C"'(o) + 5-3% 'FN@) S (C42)

For h symmetric with respect to Yy- axis,“(o)-;h,)"@),‘qg):o and 'F(',O)z |/Ro
where R, is the radius of curvature st the throat. Also Hall (Ref. 12) gives
‘f&)".:,?aﬁ}’,ﬂi’ﬁ.’iﬂl 0 =),0,-V for parabolic, circular arc, and hyperbolic
nozzle snapes. Thus for these shapes

k3 . o-x} . .
b= T R TR T (c43)
° ' ° ° °

The boundary condition on the nozzle wall {flow tangency) gives
- dh - c

ey T[EMTE =T = (TR [Eg () F €+ ]
{C45)

at  m=hpll- M}“[H—(ih_é)‘e + e

where £ = ""0/ Re For small &, one has

T el
Tﬁ—- o ~ £E& = -My C46
M $"I %:5 at  m hef 1= ™M (C46)
For &.,7 = O(I) , Eq. (C46) shows that

2 €
T W\~ M‘ ~ m (C47)




If this quantity hé—(b behaves as (|- Mt )f' as M =» | , then
) Y G
R [EEYH '~ Ul
2l
or v o~ (1= M:.") (C48)

which on substitution in Eq. (C41) shows that the linearisation is valid. In
contrast with perfect gas flows where only€= Be has to behave as QI-M: )Zas M;-._vl,
for the reacting gas flows, E,/h., B has to behave as \—M:‘) , bringing in the
characteristic dissociation relaxation length \/p non-dimensionalised by the
nozzle semi-height h, .

In other words, the linearised treatment can be valid if the
thickness parameter € behavesas w

e
;\%N A (V=M (C49)

where A is a constant of proportion_aéity i, e. for a given thickness ratio para-
meter € if hop behaves as (1-M}") as Mj = | , the linearised analysis
will still give valid results

1. e, ) z‘:-j‘ »

_JEN(\—M‘;‘) as M} — | (C50)
which implies that the dissociational relaxation length |/p should be smail
compared to the tunnel semi-height h, . Ifi other words, for flows very near
equilibrium in the throat regicn such that the dissociationsl relaxation length
is much smaller than the nozzle semi-height the linearised treatment will
correctly describe the flow behaviour near the throat. For any other behaviour
of hub , the linearisation is not valid and one has to keep some of the terms on
the RHS of Eq. (C34). Then one will have to choose a suitable relationship
between T and \—M:z. One such relationship is

*2
T N(\—M+ ) (C51)
as in perfect gas flows (Ref. 10). With this choice, the trénsfor'mation (C32)

becomes \
E = px m = @T""g

$(e,m) = p P=9) (C52)

or choosing h,, the tunnel semi-height, as the flow characteristic length, ocne
. may write



gE=x/h Mm=1"y/h,
h. $(8,7) = $=4) (C53)

which is the same as Eq. (38) in the text.
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